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We report on the use of Rys numerical quadrature for the calculation of two-
electron exchange integrals containing two Gaussians and two plane-wave func-
tions, and two-electron integrals containing three Gaussians and one plane-wave
function. Generally, the Rys polynomials for this mixed basis set are complex.
We present formulas for obtaining their roots and weights that are also generally
complex. Rys numerical quadrature provides an alternative method for calculation
of integrals of this type that are encountered in the electron–molecule scattering
theory. c© 1998 Academic Press
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I. INTRODUCTION

Hybrid two-electron integrals in a mixed Gaussian and plane-wave basis set are needed in
calculations of electron scattering by polyatomic molecules [1]. A product of a Gaussian and
a plane-wave function may be expressed as a product of two Gaussians, one real function
and the other one centered on a point in the complex plane, multiplied by an pre-exponential
factor

e−α(r−A)2ei k·r = ei k·Ae−k2/2αe(−α/2)(r−A)2e(−α/2)(r−A−i (k/α))2, (1)

and also as single Gaussian

e−α(r−A)2ei k·r = ei k·Ae−k2/4αe−α(r−A−i (k/2α))2. (2)

Hybrid integrals therefore may be calculated as is usual in the electronic structure theory for
calculation of two-electron integrals over Gaussians, except that complex arguments must
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be used in incomplete gamma functions [2, 3]. However, calculation of hybrid integrals in
this way has not been used much in practice. Instead, Watson and McKoy [4] developed a
method based on a partial wave expansion of plane-wave functions. We thought, however,
it might be profitable to examine for this purpose the use of the Rys numerical quadrature
[5], developed for effective calculation of two-electron integrals in the electronic structure
theory [6, 7]. We consider two types of integrals, exchange free–free integrals and integrals
with three Gaussians and one plane-wave function.

II. RELATION TO INTEGRALS OVER GAUSSIANS

The purpose of this section is to obtain the integrals in a form amenable to treatment by
the Rys numerical quadrature and to express all quantities needed in this method [7]. Using
Eq. (1) we rewrite the exchange free–free integral in the form∫∫

e−i k′ ·r 1(x1− Ax)
mx
(y1− Ay)

my
(z1− Az)

mz
e−α(r 1−A)2

(
1

r12

)
ei k·r 2

× (x2− Bx)
nx
(y2− By)

ny
(z2− Bz)

nz
e−β(r 2−B)2 dr 1 dr 2

= e−i k′ ·Ae−k′2/4αei k·Be−k2/4β
∫∫

(x1− Ax)
mx
(y1− Ay)

my
(z1− Az)

mz
e−α(r 1−A+i k′/2α)2

×
(

1

r12

)
(x2− Bx)

nx
(y2− By)

ny
(z2− Bz)

nz
e−β(r 2−B−i k/2β)2 dr 1 dr 2. (3)

Hereafter we will follow closely the notation of the paper by Rys and collaborators [7].
Hence, in accordance with their paper we define

xi = Ax (4)

xj = Ax − i
k′

α
(5)

xk = Bx (6)

xl = Bx + i
kx

β
(7)

ai = α

2
(8)

aj = α

2
(9)

ak = β

2
(10)

al = β

2
(11)

xA = Ax − i
k′x
2α

(12)

xB = Bx + i
kx

2β
(13)

A = α (14)

B = β (15)
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ρ = αβ

α + β (16)

Dx = ρ(xA − xB)
2 (17)

Gx = −k′2x
4α
− k2

x

4β
. (18)

The number of points in the numerical quadrature is given by the condition

N >
mx +my +mz+ nx + ny + nz

2
. (19)

The respectiveNth Rys polynomial

RN(tα, X) = 0 (20)

is of degree 2N in the variablet and the parameterX is obtained as

X = Dx + Dy + Dz (21)

The rootstα and weight factorWα of RN(t, X) depend on the value ofX. Once the roots
and weights are determined, the integral from Eq. (2) is obtained by numerical quadrature,∫∫

(x1− Ax)
mx
(y1− Ay)

my
(z1− Az)

mz
e−α(r 1−A+i k′/2α)

(
1

r12

)
(x2− Bx)

nx
(y2− By)

ny

× (z2− Bz)
nz

e−β(r 2−B−i k/2β)2 dr 1 dr 2 = 2

(
ρ

π

)1/2 ∑
α=1,N

Ix(tα)I y(tα)Iz(tα)Wα, (22)

following the usual procedure. The only difference is that we have to pass to complex
arithmetics. The integralsIx, I y, Iz are obtained as described [7] in the original procedure
for real Gaussians, except thatxA, xB, X, and Rys polynomialsRN are now complex, and
that only integrals of the typeI (ni , 0, nk, 0) are calculated. The problem thus reduces to
an efficient computation of complextα andWα for any given value of complexX. This
will be discussed in the following sections. The integralsIx, I y, and Iz contain the factor
exp(−G). This factor in its original expression [7] is independent of the positions of the
electrons and so can be taken outside the integral and collected together with other factors
standing before the integral in Eq. (2).

The integrals with three Gaussians may be expressed as∫∫
(x1− Ax)

mx
(y1− Ay)

my
(z1− Az)

mz
e−α(r 1−A)2(x1− Bx)

nx
(y1− By)

ny
(z1− Bz)

nz

× e−β(r 1−B)2(1/r12)(x2− Cx)
l x
(y2− Cy)

l y
(z2− Cz)

l z
e−γ (r 2−C)2ei k·r 2 dr 1 dr 2

= ei k·Ce−k2/2γ
∫∫

(x1− Ax)
mx
(y1− Ay)

my
(z1− Az)

mz
e−α(r 1−A)2

× (x1− Bx)
nx
(y1− By)

ny
(z1− Bz)

nz
e−β(r 1−B)2(1/r12)(x2− Cx)

l x
(y2− Cy)

l y

× (z2− Cz)
l z

e−(γ /2)(r 2−C)2e−(γ /2)(r 2−C−i k/γ )2 dr 1 dr 2. (23)
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As with exchange free–free integrals we define

xi = Ax (24)

xj = Bx (25)

xk = Cx (26)

xl = Cx + i
kx

γ
(27)

ai = α (28)

aj = β (29)

ak = γ

2
(30)

al = γ

2
(31)

xA = αAx + βBx

α + β (32)

xB = Cx + i
kx

2γ
(33)

A = α + β (34)

B = γ (35)

ρ = (α + β)γ
α + β + γ (36)

Gx = αβ(α + β)−1(Ax − Bx)
2− k2

x

4γ
(37)

N >
l x + l y + l z+mx +my +mz+ nx + ny + nz

2
. (38)

The value ofX is obtained from Eqs. (17) and (21) and the numerical quadrature is the
same as in Eq. (22) for exchange free–free integrals. The termsIx needed for the evaluation
of the integral are of the typeIx(ni , nj , nk, 0) and they are obtained by recurrence formulas
[7]. [As suggested by the referee, the transfer of factors(xi − xj ) to centeri , used in these
recurrence formulas, may be done by the PRISM algorithm of the GAUSSIAN code.]

III. COMPLEX RYS POLYNOMIALS

By a complex Rys polynomial we mean a Rys polynomial according to the original
definition [5],

Rn(t, X) =
n∑

k=0

Ckn(X)t
2k, (39)

but with complexCkn coefficients, complex parameterX, and complex variablet . For a
given X the coefficients are obtained from the orthogonality condition [5]

Cmm

n∑
k=0

CknFm+k = δmn, m≤ n, (40)
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whereF elements are incomplete gamma functions for complex argumentsX. The compu-
tation of Fn(X) is discussed separately [8]. The values oftα were obtained by root search
in the complex plane, basically in the same way as is done in one dimension by routines
contained in the HONDO package [9]. The weight factors were calculated by using the
formula [5]

W−1
α =

n−1∑
i=0

Ri (tα)
2. (41)

In the asymptote Rez→−∞ it holds [8]

lim
Rez→−∞

Fm(z) = lim
Rez→−∞

F0(z). (42)

For Rl (t, X) the root is given [5] by

tα = (F1/F0)
1/2, (43)

which implies the asymptote

lim
Rex→−∞

tα = 1. (44)

The same asymptote also holds for higher Rys polynomialsRn(t, X). This tendency may
be seen in Figs. 1 and 2.

Complex Rys polynomials constructed as described in this section have the same prop-
erties, necessary for numerical quadrature, as the usual real Rys polynomials [5]. They are
orthogonal with respect to the complex weight factor exp(−Xt2),∫ 1

0
Ri (t, X)Rj (t, X) exp(−Xt2) dt = δi j , (45)

FIG. 1. Rys polynomialsR3(t, x) for three different parametersx.
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FIG. 2. Dependence of rootstα of R3(t, x) on the value of the parameterx.

and they are also orthogonal under summation,

n∑
α=1

Ri (tα, X)Rj (tα, X)Wα(tα) = δi j , (46)

where 2n> i + j, tα(X) is a root ofRn with a positive real part, andWα is the appropriate
weight.

IV. DETERMINATION OF ROOTS AND WEIGHTS

Widespread use of the Rys numerical quadrature in the electronic structure theory is due
to the circumstance that the rootstα and weight factorsWα may be calculated accurately

FIG. 3. Dependence of weight factorsWα of R3(t, x) on the value of the parameterx.
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and efficiently [5] for any givenn and X. In this section we present the results of our
experimentation with complex Rys polynomialsRn(t, z). Optimum calculation oftα and
Wα requires the use of different formulas depending onn andz= x+ iy. We report several
distinct cases.

For the imaginary part ofz we may estimate the upper limit for a range of its absolute
value which is met in practical calculations. For exchange integrals the value ofz is given
by Eqs. (4)–(17) and (21). Assume for simplicity that onlyx components of the vectorsA,
B, k, andk ′ are nonvanishing, and thatk= k′ andα=β. Then the imaginary part ofz is

Im z= −(Ax − Bx)kx. (47)

The largest interatomic distance in the molecule of benzene, for example, is about 10 a.u.,
and the electron energy of 1000 eV corresponds tok= 8.6 a.u.−1. This gives|Im z| =86.
Under the same assumption we arrive at a similar estimate for integrals with three Gaussians
and one plane-wave function. We considered it there sufficient to limit our experimentation
for the region given by|Im z|< 400.

Roots and Weights for R1(t, z)

x> 33 and any y. In this region we may apply the limiting expression derived [5] for
real R1(t, x) and the root and weight is obtained directly as

t = (2z)−1/2 (48)

and

W = 1

2
(π/z)1/2. (49)

15< x< 33 and any y. As with the realR1(t, x), the limiting expression, augmented
by theQ-type correction [5, 9], may be applied,

W = 1

2
(π/z)1/2+ e−zQw (50)

and

Qw = (0.1962326414943/z− 0.4969524146449)/z− 0.60156581186481×10−4. (51)

For the root we have

t = (F1/F0)
1/2, (52)

and

F0 = W, (53)

F1 = (F0− e−z)/2z. (54)

10< x< 15 and |y|< 8. The root and weight are calculated again by means of
Eqs. (50)–(52), but theQ-type correction contains four terms [9].
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10< x< 15 and |y|> 8 and−25< x< 10 and any y. F0 is calculated explicitly [8]
and used in Eqs. (52)–(54).

x<−25and any y. F0 is calculated by means of the asymptotic expansion [8] protecting
the calculation against overflow. The weight is obtained from Eq. (53) asW/e−z and the
terme−z is shifted to the pre-exponential factor (see Eqs. (1) and (2)).F1 is also obtained
asF1/e−z from Eq. (54) and roott from Eq. (52).

Roots and Weights for R2(t, z)

x> 40and any y. Roots and weights may be obtained directly from limiting expressions
derived [5, 9] for realR2,

tα = z−1/2rαn, (55)

Wα = z−1/2wαn, (56)

whererαn is a positive root of Hermite polynomialH2n andWαn is the corresponding weight
factor for the 2n-point Gauss–Hermite quadrature formula [5, 9].

33< x< 40 and any y;15< x< 33 and |y|< 15; 10< x< 15 and |y|< 5. Roots and
weights may be obtained directly by means of the limiting expressions containingQr and
Qw corrections [5, 9],

tα = z−1/2rαn + e−zQr (57)

Wα = z−1/2wαn + e−zQw. (58)

15< x< 33 and |y|> 15; 10< x< 15 and |y|> 5; −25< x< 10 and any y. For a
given z we select an optimum way of calculation forF0, F1, F2, and F3 functions [8].
Squares of rootst2

1 andt2
2 are found from the solution of the quadratic equation representing

the R2 polynomial

(F0F2− F2
1 )v

2+ (F1F2− F0F3)v + F1F3− F2
2 = 0 (59)

and for the weight factors we have

W1 =
(
F1− t2

2 F0
)/(

t2
1 − t2

2

)
(60)

and

W2 = F0−W1. (61)

x<−25 and any y. Again we use Eqs. (59)–(61) but theFn functions are obtained
from the asymptotic expansion [8].

Roots and Weights for R3(t, z)

x ≥ 0 and y= 0. The roots and weights are obtained by the standard procedure [5, 9].



                  

274 ČÁRSKY AND POLÁŠEK

−18< x< 0 and y= 0. This region was broken into several smaller ones and within
each we obtained the Chebyshev polynomial approximation fortα andWα, following closely
the original procedure used for positivex arguments [5].

−25< x<−18 and any y;−18< x< 33 and any y 6= 0; 33< x< 100 and |y|> 50.
First we evaluate the coefficients of theR3 polynomial,

R3(t, z) = C03+ C13t
2+ C23t

4+ C33t
6, (62)

from the functionsF0 to F6 by the CTFC orthogonalization [5].
For anyt close to a roottα we obtain the following approximate expression from the

truncated Taylor expansion:

R3(t) = R′3(tα)(t − tα). (63)

For the roottα we have

tα = t − R3(t)/R′3(tα). (64)

Equation (64) is solved iteratively fort1 by using a suitable guess fort1 in both R3 andR′3.
Convergence is good for an educated guess and the precision to 10−11 is achieved in several
steps. We found that the number of points used for a guess may be limited to a set listed in
Table 1.

The other two roots may be obtained by using the properties of the cubic equation

a+ bv + cv2+ v3 = 0 (65)(
v − t2

1

)(
v − t2

2

)(
v − t2

3

) = 0 (66)

TABLE 1

Roots and Weights ofR3(t, z) for Several Values ofz

x y α tα Wα

0 0 1 0.2386191861+0.0i 0.4679139346+0.0i
2 0.6612093865+0.0i 0.3607615730+0.0i
3 0.9324695142+0.0i 0.1713244924+0.0i

−25 0 1 0.8608284718+0.0i 0.0002077080+0.0i
2 0.9517421873+0.0i 0.0056630601+0.0i
3 0.9914385577+0.0i 0.0145560467+0.0i

0 100 1 0.0292290031+0.3435130055i −0.0002148267+0.000052316i
2 0.0493015410−0.0517897788i 0.0628828727−0.0627221449i
3 0.9998428610−0.0049973347i −0.0025555275+0.0043027389i

33 50 1 0.0496122630−0.0266995959i 0.0824406699−0.0443667042i
2 0.1519787400−0.0817896766i 0.0178694536−0.0096167198i
3 0.2674269042−0.1439198667i 0.0005153764−0.0002773578i

33 200 1 0.0233543649−0.0198167738i 0.0388079835−0.0329294981i
2 0.0715421285−0.0607053187i 0.0084119249−0.0071376007i
3 0.1258879315−0.1068191141i 0.00024261606−0.0002058542i
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a ≡ C03/C33 = −t2
1 t2

2 t2
3 (67)

b ≡ C13/C33 = t2
1 t2

2 + t2
2 t2

3 + t2
1 t2

3 (68)

c ≡ C23/C33 = −t2
1 − t2

2 − t3
3 . (69)

Sincet1 is already known, the rootst2 andt3 are obtained as

v = t2
α

from the quadratic equation

v2+ (c+ t2
1

)
v − a

/
t2
1 = 0 (70)

The weights are obtained from Eq. (41).

x<−25and any y. As is seen from Fig. 1, the curve forR3 becomes flat asx decreases
and the determination of roots becomes troublesome. In this region ofx the calculation of
Fn functions is fast [8], and it is therefore preferable to reorganize the right-hand side of
Eq. (22) as

2

(
ρ

π

)1/2 ∑
α=1,N

Ix(tα)I y(tα)Iz(tα)Wα =
∑

m

∑
α

Cmt2m
α Wα (71)

and next, using the properties of roots and weights of Rys polynomials [5], as

2

(
ρ

π

)1/2 ∑
α=1,N

Ix(tα)I y(tα)Iz(tα)Wα =
∑

m

CmFm, (72)

which corresponds to the traditional calculation method of two-electron integrals in the
electronic structure theory [10]. We do not claim, however, that the Rys numerical quadrature
cannot be applied in this region. We only do not know to determine the roots and weights
effectively and with sufficient precision forx<−25.

x> 100and any y; x> 50and|y|< 50. tα andWα may be calculated directly from the
limiting expressions (55) and (56).

33< x< 50 and |y|< 50. Equations (57) and (58) may be used for direct calculation
of tα andWα.

Roots and Weights for R4(t, z)

x >= 0 and y= 0. For real nonnegativez the roots and weights are calculated by the
standard procedure [5, 9].

x> 47and any y. Use may be made of Eqs. (55) and (56) withrαn andwαn determined
for real R4 polynomials [5, 9].

35< x< 47 and |y|< 50; 20< x< 35 and |y|< 5. In this region roots and weights
may be calculated fromrαn andwαn values andQ corrections [5, 9] by means of Eqs. (57)
and (58).
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−25< x< 20 and any y;20< x< 35 and |y|> 5; 35< x< 47 and |y|> 50. We first
evaluateF1 to F10 functions [8]. Then theR4(t, z) polynomial is determined from the CTFC
orthogonalization [5], and its roots are obtained by means of an iterative procedure, similar
to that used forR3(t, z) polynomials. Again, we use a truncated Taylor expansion

R4(t) = R′4(tα)(t − tα) (73)

and starting with two different educated guesses for two different roots, we obtain two
values oftα in several steps from

tα = t − R4(t)/R′4(tα). (74)

This iterative procedure works well if the guesses fort1 andt2 are close to the two roots. We
keep therefore the values of the guess in two arrays of size 288×400 internally stored in the
program. The grid is 0.85 and each array spans the region−25% x % 47 and 0% y % 100.
Values fory= 100 may be used as a guess for determination of roots withy> 100.

The other two roots,t3 andt4, are obtained from the quadratic equation asv= t2
α ,

v2+ (d + t2
1 + t2

2

)
v + a

/
t2
1 t2

2 = 0, (75)

which was derived from the following manipulation withR4(t, z):

R4(t, z) = C04+ C14t
2+ C24t

4+ C34t
6+ C44t

8 (76)

a+ bv + cv2+ dv3+ v4 = 0 (77)(
v − t2

1

)(
v − t2

2

)(
v − t2

3

)(
v − t2

4

) = 0 (78)

a ≡ C04/C44 = t2
1 t2

2 t2
3 t2

4 (79)

b ≡ C14/C44 = −t2
1 t2

2 t2
3 − t2

1 t2
2 t2

4 − t2
2 t2

3 t2
4 − t2

1 t2
3 t2

4 (80)

c ≡ C24/C44 = t2
1 t2

2 + t2
1 t2

3 + t2
2 t2

3 + t2
1 t2

4 + t2
2 t2

4 + t2
3 t2

4 (81)

d ≡ C34/C44 = −t2
1 − t2

2 − t2
3 − t2

4 . (82)

The weights are obtained from Eq. (41).

x<−25and any y. For large negativex it is difficult to maintain in the determination
of roots and weights the required numerical precision, and therefore it is preferable to derive
explicit formulas for theCm coefficients appearing in Eq. (71) and to evaluate the particular
integral from theFm functions in the traditional way. Still it is certainly desirable to develop
such a procedure which could evaluate roots and weights in this region ofz effectively and
with sufficient precision.

V. SUMMARY

We suggested the Rys numerical quadrature as a method for the calculation of two-
electron integrals in a mixed Gaussian and plane-wave function basis set. In contrast to the
original use of the Rys numerical quadrature for integrals in Gaussian basis sets, the roots
and weights of Rys polynomialsRn(t, z) given by mixed basis sets are generally complex.
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Their accurate and efficient computation requires different approaches for different regions
of z. Our experimentation in this respect is presented forRn(t, z) polynomials withn % 4.
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